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Abstract. The problem of relating measurements made in an inertial (laboratory) frame to 
measurements made in a rotating frame is attacked through the derivation from first 
principles of the appropriate transformation equations. These are then used to derive a 
metric for a rotating system in which the energy tensor is everywhere zero, i.e. a rotating 
massless system. This metric is used to obtain descriptions of a variety of phenomena in 
rotating systems. Similarities between results produced by the metric approach and results 
produced by the technique of associating linearly-moving Lorentz frames instantaneously 
with points within the rotating system are indicated. Emphasis is laid throughout upon the 
way in which measurements made by different techniques are interpreted and related. 

1. Introduction 

The rotating coordinate system presents a problem of particular interest, as is witnessed 
by the large number of publications on the subject which have appeared since the 
inception of relativity. However, although numerous attempts have been made to find a 
suitable coordinate transformation from an inertial frame to a rotating frame, or to 
construct a metric for a rotating frame, none of them has yet been verified by 
experiment. This paper is concerned with the derivation of a coordinate transformation 
and metric for a rotating system and, as will be shown, produces results consistent with 
all experiments to date on rotating systems. Particular emphasis is laid on the 
interpretation of measurements made in rotating systems. 

The metric is derived from the Minkowski space-time of a ‘laboratory frame’ by first 
deriving the general transformations to the rotating system. The derivation of the 
transformations relies on the assumption of radar measurement as a fundamental and 
valid method of measuring distance in any space time and the transformations are 
applicable to rotating systems in which the energy tensor is everywhere zero, i.e. a 
rotating massless system. 

It is important to realise that since the formulation of a ‘general metric’ for a rotating 
system depends on the coordinate system used, the metric will be a function of the way 
in which measurements are made within the rotating system. For example, if A and B 
are two points in synchronous rotation with the system then an observer at point A who 
measures the distance to point B by a radar technique will, in general, obtain a different 
result by walking along the shortest path from A and B and noting the distance that he 
has travelled. Obviously these two forms of measurement can be related but the metric 
itself will be a function of which measurement procedure is chosen to describe 
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coordinate distance. The second of the measurement procedures described above we 
shall call ‘collated proper measurement’ since it involves the successive measurement 
by an observer in his own local frame of a series of infinitesimally small steps between A 
and B. This technique is equivalent to considering events as they are described by an 
infinite number of observers, stationary with respect to the rotating system, who collate 
their observations at a single data centre. 

Why should we consider these different methods of measurement? It would 
perhaps seem more logical to confine our attention to ode technique, say radar 
measurement, and then to define all our measurements in terms of this technique. 
However, in practice this is not sufficient for one generally makes many different types 
of measurement of the same event and it is important to consider as many different 
forms of measurement of the same event as possible in order to learn about the nature of 
the space. Also, on a practical note, an observer travelling from A to B will be 
interested in the shortest distance that he need travel in going from A to B as well as the 
radar distance of B from A. 

In the paper we consider the derivation of the metric and then examine applications 
of the metric to descriptions of various phenomena as seen in a rotating system. The 
metric produces results consistent with previous work and where this occurs the 
correlation has been pointed out. We have not found any instances where the metric 
produces results inconsistent with any experimental work on rotating systems. 

However, it is important to emphasise in this introduction that the results obtained 
are a function of the way in which measurements are made and interpreted in rotating 
systems. 

2. The derivation of the Coordinate transformation to a rotating system 

Consider figure 1 which shows how a radar measurement, made by an observer at A, of 
the distance AB between two points A and B which are fixed in a rotating system, 
appears when drawn in the inertial frame, S ,  of the laboratory. The system is rotating 
with respect to the laboratory at angular velocity w about the centre of rotation, 0. In 
the following analysis unprimed symbols refer to the inertial frame S and primed 
symbols refer to measurements made by the rotating observer at A. A is situated at a 
constant inertial distance R from the centre of rotation 0. de, is the instantaneous 
value of dB such that d e  = dei +wdt. 

A radar signal is sent out by A when A is at A1 and B at B1. This signal is received by 
B when B is at B2 and A at A2. B inaantaneously retransmits the signal back to A and A 
receives it when he is at A3 and B is at B3. If the time taken for the signal to travel from 
A1 to B2 is drl and the time taken for the signal to travel from B2 to A3 is dr2 then 

dui  = c dtl d ~ 2  = c dt2 (I) ,  (2) 

d41= w dtl d42 = w dt2. (31, (4) 

d&=dR2+R2(de ,  + d b l ) 2 = d R 2 + R 2 ( d e i + w  dt1)’ ( 5 )  

du:=dR2+R2(d8,  -d42)2=dR2+R2(dB,  - U  dt2)2 (6) 

From figure 1 and using equations (3) and (4) we see that 

and 

in which R is constant and dR is an incremental distance in the inertial radial direction. 
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Figure 1. The appearance of a radar measurement, made by A, of the distance between 
points A and B on a rotating system, drawn in the inertial frame, S, of the laboratory in 
which the system is rotating at angular velocity w about the centre of rotation 0. 

Using equations (1) and (2) to substitute into equations (5) and (6) for dtl  and dt2 we 
find after solving the resulting quadratic equations for d a l  and da2 that (Arzelies 1966, 
Ashworth and Jennison 1976) 

$(dg1+da2)=[dR2/(1 - R 2 ~ 2 / ~ 2 ) +  R 2  d 6 f / ( 1 - R 2 ~ 2 / ~ 2 ) 2 ] ” 2 = t ~ ( d t l + d t 2 ) .  (7) 

Following Arzelies (1966) by letting i(dtl + dt2) = dt means that the ‘radar’ distance d a  
between A and B is given by du = cdt according to an inertial observer in the laboratory 
frame. Hence 

2 2  
2 2 = ~  d t ,  

R 2  d6f + 2 dR2  
d a  = 

(1 - R 2 ~ 2 / ~ 2 )  (1 - R’w’/c ) 

However, the rotating observer A will measure all distances within his own infinitesi- 
mally small local frame in terms of Euclidean geometry, and this geometry may be 
extended to a Euclidean plane covering the whole rotating system (Arzelies 1966) as 
shown in figure 2. Therefore according to the rotating observer A, the radar distance to 
B is given by da ’  where, according to special relativity 

d ~ ’ 2 = d R 2 + R 2 d 8 ’ 2 = c 2 d t ’ 2  (9) 

since both R and dR are normal to the instantaneous velocity vector at A. Equations 
(8) and (9) can be written in the form 

R 2  
-c2( 1 -+) dt2 = d R 2 +  R 2  d6”-c2 dt” 

R 2  d65 
0 = d R 2 +  

(1  - R 2 ~ 2 / ~ 2 )  

which can be satisfied by requiring that 



1428 D G Ashworth and P A  Davies 

Figure 2. To show how the Euclidean geometry of the infinitesimally small local frame of 
the rotating observer A may be extended to a Euclidean plane covering the whole rotating 
system. 

and 

dt '  = dt(1 - Rzw2/c2 ) 'J2 .  (12) 

Equations (1 1) and (12) reduce to de'  = d e  - w dt and dt' = dt when R = 0 which is the 
usual Galilean transformation assumed for a stationary observer at the centre of a 
rotating coordinate system. 

The 'radial' transformation may be obtained by sending a radar signal from the 
observer A to the centre of rotation of the system where it is reflected back and received 
by A after a time 2tk0 has elapsed. Since 2tko = 2tA0(1- Rzw2/c2 ) ' /2  by equation 
(12), and since R = CtAO, we have 

2tko = ( 2 R / c ) ( l -  R 2 w 2 / c 2 ) 1 J 2 .  (13) 
The observer at A will define the radial distance to the centre as being given by 
R' = ctko since local measurements of the velocity of light will give a value c. Provided 
that we remember that radial measurements have been made by radar techniques then 
we can set (Jennison 1964) 

R ' = R ( l  - R 2 w 2 / c 2 ) ' / 2  (14) 
in which both R and R '  are constants since the observer is fixed at A. 

Let us assume that the observer at A now wishes to find the distance of some 
arbitrary point P from the centre 0. An observer at 0 will measure, by radar, the 
distance to P as r = ctpo but A knows that tbo = tpO(l - R 2 w 2 / c 2 ) ' ~ 2  and so the radar 
distance of P from 0 written in the coordinates of the observer at A will be r' = ctbo, 
whence 

r' = r ( 1 -  R 2 w 2 / c z ) ' ~ z  

which is valid for all r and gives equation (14) when r = R and r' = R ' .  Hence, all radial 
coordinate distances, according to the rotating observer A, are reduced by the scaling 
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factor (1 - R 2 w 2 / c 2 ) ’ / ’ .  By analogy with proofs of the Lorentz transformations (e.g. 
Atwater 1974) we shall assume that distances measured transverse to the direction of 
relative velocity and acceleration, i.e. in the z ,  z ’  direction, must be unaffected by the 
motion. Hence 

z ’ = z .  (16) 

From equations (1  1)  and (12) it is possible to derive a further equation which relates the 
angular velocity measured by an observer at rest in the rotating system to that measured 
by an observer at rest in the laboratory frame. If we fix 6 = constant then 

--w -w‘  de’  _- 
dt’ - (1 - R 2 w 2 / C 2 )  

where - w ’  is the angular velocity of the laboratory frame as measured in the coor- 
dinates of the system S‘ where S‘ is the rotating frame according to the observer at A. 
Hence w ’  is the angular velocity of rotation of the system S as measured by an observer 
who is stationary in S ‘ .  This expression for w ’  is identical to the one derived by Irvine 
(1964) and would appear at first sight to be incompatible with the equation given by 
Jennison (1964) which is of the form 

w 0’ = 
(1  - R 2 w 2 / c 2 ) ’ / 2 ‘  

However, the angular velocity SZ‘ given by equation (18) refers to the rate at which the 
universe appears to rotate with respect to an observer who measures the rotation of the 
universe by measuring the time interval for one revolution in a particular manner: he 
measures the time interval between successive transits of some point over which he 
passes. An assumption implicit in this kind of measurement of angular velocity is that 
locally there are 27r radians in one revolution, both for the rotating observer and for the 
observer fixed in the laboratory frame. Hence equation (18) assumes 8’ = 0 - w t  and 
this assumption accounts for the difference of (1  - R 2 w 2 / c 2 ) 1 ’ 2  between equations (17) 
and (1  8). 

Using equations (15) and (17) we can easily show that 

(1 - R 2 w 2 / c 2 )  = (1 + R ” w ” / c 2 ) - ’  (19) 

which, together with equations ( l l ) ,  (12), (15)  and (16), enables the coordinate 
transformations between an inertial frame of reference S(r, 8, z ,  t )  and a rotating frame 
of reference S’(r’, e’, z’ ,  t’) to be written as 

r‘ = r ( 1 -  R2w2/c2) ’ / ’  r = r ’ ( l +  R’2w’2 /c2 ) ’ ’2  

(8--wt) (ef  + 
(1  + R’2w’2 /c2 )1 ’2  8’ = e =  (1  - R z w 2 / c 2 ) ’ / 2  

(20) 
z ’ = z  z = z ’  
t’ = t ( 1 -  R 2 w Z / c 2 ) ’ / ’  t = t’(1 + R ‘ z w ’ 2 / c 2 ) ’ / 2  

in which R ,  U,  R‘ and w ‘  are constants. 
The symmetry of these equations and their similarity to the Lorentz transformations 

is strikingly apparent. Equations (20) reduce to the Galilean rotational transformations 
for R = 0, as indeed they must. It should be borne in mind in what follows that the 
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above transformations apply to transformations between inertial observers in S and 
observers in S’ who are rotating at constanr inertial radial distance R from the centre of 
rotation 0. 

3. The metric of the rotating system 

In this section we consider the metric obtained when the transformations given in 
equation (20)  are applied to the flat space-time of the Minkowski metric. The resulting 
metric corresponds to a description of the rotating system as made by an observer at a 
constant inertial radial distance R from the centre of rotation 0 of the rotatingsystem and 
who is in synchronous rotation with the system. The coordinate system in which this 
observer makes his measurements has its origin at the centre of rotation of the system. 
The cylindrical form of the Minkowski metric in the laboratory system S(r,  8, z ,  t )  is 
given by 

(21)  ds2 = -dr2 - r2  de2 - dz2 + c 2  dt2 

which transforms by equations (20)  to give 

ds2 = -(1 + R‘2w’2/c2)  dr” - ri2 de” - 2 ~ ‘ r ’ ~  de’ dt‘-dz” 

+c2[1  + ~ ’ ~ ( R ’ ~ - r ’ ~ ) / c ~ ]  dt” 

for the metric in S’(r’, 8, z’ ,  t ’ ) .  It is important to note here that both R and R’ are 
constants for an observer at a fixed point within the rotating system. The metric of 
equation (22) ,  therefore, gives a description of the rotating system for the observer 
situated at the said fixed point. If the observer moves then R and R‘ change and the 
observer then effectively has a new metric to apply. 

The spatial line elements of the rotating system can be obtained from equation (22)  
by using the definition (e.g. Atwater 1974) 

(23)  d g  = -kWY - gWogvo/goo) dx dx” 2 

from which, since the suffix 0 refers to the time coordinate, 

d d 2  =drf2(1  + R’2w’2/c2)+r’2(1 +w’2R‘2/c2)[1 + ~ ’ ~ ( R ‘ ~ - r ’ ~ ) / c ~ ] - ~  dO”+dz” 

or, alternatively, 
(24)  

du’2=dr2+r2(1 - R 2 w 2 / c 2 ) ( 1  -r2w2/c2)-l  d8”+dz2.  (25)  
Since the geometry within the infinitesimally small local frame, S’ ,  is Euclidean a 

rotating observer in S’ who holds a torch and uses it to emit a flash of light would ‘see’ 
the light recede from him as a spherical wavefront travelling with velocity c. This 
phenomenon is described mathematically by using equation (22) .  For a light signal, 
ds = 0, which enables equation (22)  to be solved for dt’ giving 

dt’ = f 
1 /2  

+dz2)  
o r 2 ( 1  - R 2 w 2 / c 2 )  de‘ ( 1  - R 2 w 2 / c 2 ) 1 / 2  ( 1  - R 2 0 2 / c 2 ) r 2  de” 

2 1w2(dr2+ ( 1  - r2w2/c2)  c2(1 - r2w2/c2)  c ( 1 -  r2w2/c 
(26)  

which, by equation (25) can be written in the form 

wr2(1 - R 2 w 2 / c 2 )  de’  ( 1  - R 2 w 2 / c 2 ) 1 / 2  du‘  dt’ = f 
c2(1 - r2w2/c2)  c (1  -r2w2/c2)1/2 
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or, by using the transformation equations, 

c(dt -wr2 de/c2) 
(1 - r2w2/c2)1/2 * 

d u '  = 

But in the proper frame of the observer r = R and du '  = cdT', where dT'  is the time 
taken by a ray of light in travelling a distance du '  according to a rotating observer who 
makes actual 'one-way' measurements in S'.  Hence 

dt -wR2 de/c2 
(1 - R2w2/c2)'/2 

dT '  = 

which is the same time transformation as that obtained by applying the instantaneous 
Lorentz-frame approach to measurements in rotating systems, that is according to such 
Lorentz-transformation time-transforms as 

dt - vdx/c2 
dT'  = 

(1 - v2/c2)1/2. 

Replacing v by Rw and dx by R d 8  in equation (29) gives equation (28). Alternatively 
equation (28) may be written in the form 

(30) dT'  = dt' - RI2"' d6'/C2. 

We now look at some applications of the theory so far derived. 

3.1. The velocity of a particle in the rotating system 

The velocity U' of a particle, as measured locally (at r = R )  by an observer in 
synchronous rotation with the system, is given by 

U' = (dff'/dT'),,R (31) 

u'=c[(c~-Rwu~)~-(c~-u~)(c~-R~w~)]~'~(c~-~Ru~)-* (32) 

and hence, by equations (25) and (28) 

in which, 

at r = R. I U, = drldt, ue = r deldt, U, = dz/dt, 
U = u ,  + u e + u z  2 2 2 2  

Letting 

gives 

r2 I2 M I 2  = + U e  + U ,  

u,(l - R2w2/c2)'/2 - - U , =  - 
,=R 1 - wRue/c2 

and 

(33) 

(34) 

(35) 

where equations ( 3 9 4 3 7 )  are identical to the velocity addition formulae of special 
relativity. 
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However, the apparent or coordinate velocity of a particle, U:,,, according to a 

uLpp = du‘/dt’ (38) 

rotating observer is given by 

from which, by means of equations (20) and (25), we see that 

, c [ (c ’ -  rwue)’- (c2 - u 2 ) ( c 2  - r 2 w 2 )I 112 

(C - r  w ) ( c ~ - R ~ ~ * ) ’ / ~  2 2 2 1 /2  Uapp = 7 (39) 

in which 
a velocity measured within the rotating system. 

= r dO/dt. It is important to realise that uLPp as given by equation (39) is not 

The components of the apparent velocity are 

uLaPp = ur(1 - R w I C  ) 

Ubapp = ( u e - w r ) ( l - r  /C ) ( 1 - R 2 w 2 / C 2 ) - 1 / 2 ,  

(40) 

(41) 

2 2 2 -1 /2  , 
2 2 2 -1/2 

and 

A free particle travelling with constant velocity U in the r, O plane of the laboratory 
system S will have components of velocity in the system S given by 

(43) 

where a is the radial distance to the point of closest approach of the particle to the axis 
of rotation of the system. 

2 2 112 u , = u ( r  - a  ) / r ,  = ua/r, U* = o  

3.2. The velocity of light in the rotating system 

From equations (39) and (43) we can obtain the apparent velocity of light chpp = da’/dt’  
in the rotating system by setting U = c, thus obtaining 

(44) 

Equation (44) does not give the velocity of light as it would actually be measured 
within the rotating system, as ‘proper’ measurements of velocity are made either by 
‘there and back’ radar measurements or by means of two observers who, by using 
synchronised clocks, note the time when a particle passes through their own localities. 
The ‘proper distance’ between the two observers divided by this ‘proper time interval’ 
will give the ‘proper velocity’. Using these methods the velocity of light in the 
immediate vicinity of any observer, whether or not he is accelerated, will always be c. 
This can be shown to be true in the case of the rotating observer by setting U = c into 
equation (32), whereupon 

~ : ~ , = c ~ ( c * a w ) ( c ~ - r  2 w 2 ) -1 /2  (c  2 -R 2 w 2 ) -112 . 

CI = c. (45) 

3.3. Equations of motion 

inertial ‘forces’ are descirbed by the equation (e.g. Atwater 1974 p 120) 
The equations of motion of free mass points under the influence of gravitational and 
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where the ‘dot’ denotes differentiation with respect to s and where {FA} denote 
Christoffel symbols of the second kind. Equation (46) gives the geodesic equations 
whose character is determined by the metric tensor of the coordinate manifold in which 
the point mass moves. Electromagnetic forces may be included into the equations of 
motion in a covariant way by adding an electromagnetic force term f” to the geodesic 
equation, thus giving 

We shall now use equation (46) together with the metric of equation (22) to derive the 
equations of geodesics within the rotating system according to a single observer who is 
stationary within the system and is situated at inertial distance R from the axis of 
rotation 0. Geodesics fall into three classes: geodesics (the paths of free particles) 
within the rotating system, null geodesics (light paths) within the rotating system and 
spatial geodesics (the shortest spatial distance between two points) within the rotating 
system. We shall confine our attention to the plane z = z ’  = 0. 

3.4. Geodesics 

The geodesic equations are obtained from equation (46) by using the metric tensor 
derived from equation (22) in the usual manner and are found to be, in differential form, 

(au * wr2)  
w ( r 2  - a2)l/’(1 - R 2 w 2 / c 2 ) 1 / 2  

_-  - *  d8’ 
dr 

where r = a, r’ = a’ is the point of closest approach of the curve to the centre of the 
coordinate system and U is the velocity of a free particle travelling in the laboratory 
frame S(r,  8, z ,  t ) .  Since U is independent of r, equation (48) may be integrated to give 
the equation for a geodesic: 

e ’=  *(I - R ~ ~ * / c ~ ) - ~ / ~ [ c o s - ~  ( ~ / r ) * ( r ~ - u ~ ) ~ / * w / u ]  (49) 

if 6” = 0 when r = a. Also, using equations ( 2 5 )  and (48) to evaluate du ’  we find that 

2 2 1/2 r [ ( c 2  f ~ a u ) ~  - ( c 2  - u 2 ) ( c 2  - w  r )] dr 
da ’  = 2 1 / 2  2 2 2 1/2 u ( r 2 - a  (c  -0 r ) 

which, since U is independent of r, can be integrated to give 

( c2  * awu) (c2 - - a2)1/2(c* - w 2 r 2 ) 1 / 2  

2 2 1 / 2  (51) u [ ( ~ ~ - a w u ) ~ - ( c ~ - u ~ ~ ( c ~ - w  r 11 E(x,  k )  - U’ = 
O U  

where E(x,  k )  is an elliptic integral of the second kind, 

and 

(53) 2 1 / 2  2 2 2 1 / 2  2 k = ( c 2 - u  ) (c - w  a ) (c  *awu) - ’ .  
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U‘, as derived above, is the length of a geodesic in the system S‘ .  It is also readily shown 
that 

r ( 1 -  R 2 w 2 / c 2 ) 1 / 2  dr dt’ = z t  
u(r2 - 

which, since U is independent of r, integrates to give 
t’ = ( r 2 - a 2 ) 1 / 2 ( 1  - R 2 w 2 / c 2 ) ’ / 2 u - 1 .  

(54)  

( 5 5 )  

3.5. Null geodesics 

The equations of null geodesics may be obtained by setting U = c in equations (49) ,  ( 5 1 )  
and ( 5 5 ) .  Equation (49)  becomes 

(56)  8’ = *(l - R2w2/c2) -”2[cos- ’ (a /r )  * ( r 2  - a 2 ) ” 2 ~ / ~ ] ,  

where 6’ = 0 when r = a and equation ( 5 1 )  gives 

for the length of a ray path in the system S’. Also, equation ( 5 5 )  gives 

3.6. Spatial geodesics 

If we define a spatial geodesic as the shortest distance between any two points in space 
rather than in space-time then a spatial geodesic in a given coordinate system will be the 
path followed by a particle travelling at an infinite velocity as measured in that 
coordinate system (Ashworth and Davies 1977). Setting U ’  = m in Eq. (32)  gives 

U e  = C2/WR (59)  
But, Ug = u a / R  by equation (43) .  Therefore 

(60)  

A particle travelling with an infinite velocity in S’ would therefore have a velocity of 
c’law in S. As both U and i’ are greater than the velocity of light, c, for a particle 
travelling along a spatial geodesic, it is evident that no real free particle can ever travel 
along a spatial geodesic in the frame S’.  To find the equations of a spatial geodesic we 
let U = c2/aw in equations (49)  and ( 5 1 ) ,  thus obtaining 

2 
U = c law.  

6’ = * ( l  - ~ ~ R ~ / c ~ ) - ~ ~ ~ [ c o ~ - ~ ( a ~ r ) - ( r ~ - a ~ ) ” ~ a w ~ / c ~ ]  (61)  

For R = 0, equations (49)  and (61)  are identical to equations given by Arzelibs (1966).  
Setting a = 0 in equation (62)  gives U’ = r. Therefore the rotating observer situated 

at inertial radial distance R from the centre of rotation infers that the shortest ‘walking’ 
distance between himself and the centre of rotation is R provided that during the ‘walk’ 
his velocity relative to the rotating system is infinitesimally small. This would at first 
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sight appear to conflict with equation (14) which states that this same observer will 
measure the radar distance to the centre of rotation to be R ( l -  R 2 w z / c 2 ) ” 2 .  However, 
the conflict is resolved when one begins to interpret the two types of measurement. The 
distance R ‘ =  R ( l  - R 2 w 2 / c 2 ) ” 2  is the shortest distance to the centre according to a 
single rotating observer who always remains at the same radial distance from the centre 
and who, therefore, is always travelling at the same linear speed, Rw, with respect to an 
inertial observer at the centre. The distance crko = R is this same observer’s inter- 
pretation of the shortest distance to the centre that would be measured by an observer 
who actually crossed the system taking measurements during the journey but who was 
stationary with respect to the rotating system as each successive measurement was 
made. In deriving equation (62) all parts of the rotating system were considered to be in 
synchronous rotation, i.e. the observer crossing the system was assumed to have a linear 
speed (at the instant he took a measurement) with respect to an inertial observer at the 
centre of rotation, given by rw where r varies from point to point as the observer crosses 
the rotating system and w is constant and independent of r. The fixed observer at R is 
therefore interpreting the measurements made by this imaginary observer who takes an 
infinite number of measurements as he crosses the rotating system. Each time a 
measurement is made by the imaginary observer he is assumed to be in synchronous 
rotation with the system and therefore at each successive measurement he has a 
different linear speed rw. When the fixed rotating observer at r = R interprets this 
infinite number of measurements he takes into account the fact that each measurement 
was made whilst the imaginary observer was travelling at a different velocity, thus 
coming to the conclusion that crko = R .  

On the other hand, the distance R ’ =  R ( 1 - R 2 w 2 / c 2 ) ’ ~ 2  does not demand that w 
should be independent of r as it is a measurement made by a single, fixed observer 
rotating at constant speed in synchronism with the system at r = R .  Hence the 
difference between equation (14 )  and equation (62) is a real and necessary one. 

3.7. Geodesic equations derived from collated proper measurements 

In this section we consider events in the rotating system as described by a single rotating 
observer who makes ‘proper’ measurements within his own locality as he moves from 
point to point within the rotating system or, alternatively, events as described by an 
infinity of rotating observers at all points upon the rotating system, each of whom makes 
proper measurements within his own locality. The measurements are all collated at a 
common data centre. We obtain these measurements by letting R vary, i.e. we let R = r. 
We have already obtained the expression for the proper measurement of particle 
velocity U ’  upon the rotating system, namely equation (32) which, for a null geodesic, 
i.e. U = c, gives U ’  = c thus satisfying a basic postulate of relativity. Let us now examine 
the proper measurements of geodesics, null-geodesics and spatial geodesics within the 
rotating system, as made by observers in synchronous rotation with the system. 

Geodesics 

The proper measurement of de’ ldr  for a geodesic may be obtained from equation (48 )  
by setting R = r :  

de’ 
dr ur(r2 - a z ) 1 ’ 2 ( l  - r 2 w 2 / c 2 ) 1 / 2  

(au * wr2) 
(63) _-  - *  
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which, since U is a constant, may be integrated to give 
2 2 1 /2  c ( r 2  - a ’)’/‘ w ( r  - a  ) 

From equation (50) it can be seen that dv ’  is independent of R, hence v’ may be 
obtained directly from equation (5 1 )  as 

in which E(x,  k), x and k have the same meanings as previously. 

given by equation (301, namely 
A proper measurement of the time taken for a particle to travel a distance d d  is 

(66) 
into which we can substitute for dt’ from equation (54) (after setting R = r )  and for de’  
from equation (63) ,  thus obtaining 

dT‘  = dt’- R 2 w  dO‘/c2 

cr(1 * w a u / c 2 )  d r  
d T ’ =  * 2 1 /2  2 2 2 1/2  u ( r 2 - a  ( c  - w  r )  

which, since U is constant, integrates to give 

Null geodesics 

The proper measurement of dO‘/dr within the system S‘ may be obtained from equation 
(63) by setting U = c. Hence 

if 8’ = 0 when r = a. Setting U = c in equations (65) and (68) gives 

) 
1 ( w / c ) ( r 2  - a2)1/2 

( ( 1  - w 2 a  2/c2)1/2 
U’ = -(c uw ) sin-’ 

o 
and 

Equations (69) and (70) describe the paths of circular arcs and have been discussed 
by Ashworth and Davies (1977). 

Spatial geodesics 

The equations for a spatial geodesic are obtained by setting U = c 2 / a w  in equations 
(64), (65) and (68) giving 

[ ( c(r’-a’)”’ ) ao o ( r2  - a 2)1/2  
r ( c 2 - a  2 w 2 ) 1 / 2  -- C sin-’( ( C 2 - U  2 w 2 ) 1/2)]. 

e ’=*  sin-’ 
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(73)  2 1 / 2  2 2 1 / 2  ( + ‘ = ( l - a 2 w 2 / c  ( r  - a  ) 

and 

T’ = 0. (74)  

Equation (74)  is a direct consequence of the fact that U ’  = CO for a spatial geodesic. 
The above geodesic equations have been written in terms of r, a and w rather than r‘, 

a’ and w ’  in order to keep the equations as simple as possible. Equations (70) and (73)  
were first derived by Ashworth and Jennison (1976). 

3.8. Aberration angles 

If 4’ is the angle between the positive direction of motion of the light ray (when passing 
through the locality of an observer at r = R )  and the direction of the velocity vector of 
the observer at r = R (according to an observer who is stationary in the laboratory 
system S )  then from equation ( 2 5 )  

dr(1-  r2w2/c2)ll2 
r ( 1 -  R2w2/c2) ’ /2  de’  

tan 4’ = 

which, when combined with equation (63)  (after setting U = c), gives 

c ( R  - a 2, ‘ I 2 (  1 - R 2w ’ / c  2, ‘ I 2  

ac*wR2 
tan 4‘ = f 

(75)  

after setting r = R. equation (76)  is the ‘aberration’ equation of special relativity and is 
an experimentally verifiable expression. 

3.9. Electric and magnetic fields in the rotating system 

Using the transformations of equation (20) it can readily be shown (see e.g. Atwater 
1974) that an electric field in the inertial frame S whose components are E,, E@, E, and a 
magnetic field in the inertial frame S with components of magnetic induction given by 
B ,  Be, B, will transform into an electric field with components E:, EL, E:  in S‘ and a 
magnetic field with components of magnetic induction B:, BL, B: where 

E, =(E:  -w’r’B:) ( l+ Rr2wr2/c2) - l  E: =(E,+wrB,)(1-R2w2/c2)-’  

Ee = Eh(1+ R’2w’2/c2)-’/2 EL = E6(l  - R2w2/c2) - ’ /2  (77)  
E:  = (E,  -wrB,)(l -R2w2/c2) - ’ /2  2 -1 /2  E, = ( E :  +w’r‘B:)( l  +R’2w‘2/c  ) 

and 

In addition current density and charge density written in the form of a four vector 
transform according to equation (20). 
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3.10. Equation of motion in the rotating system for a charged test particle in an 
electromagnetic field 

The equations of motion for a charged test particle in an electromagnetic field can be 
found by using equation (47) together with the metric of equation (22) (Atwater 1974) 
giving 

?'-rfy2[8'+w'i']2 = (qr2/mc)(i'E: +8'r'B: -2'BL) 

g'+(2i ' /r t)(d '+w'i ' )  = (qy4/mcr')(i'EL -i'BL +i 'B: ) -w ' f ' '  

i" = (q/mc)(i'E: + i'BL - d'r'B;) 

? =  (qy2/mc3)[r 'o ' ( i 'EL- i 'B:  +i'B:)+i'E: +d'r 'E;+i 'E:]=f" 

(79) 

in which 

y 2  = (1 + Rf2wr2/c2)-', 

m is the rest mass of the test particle, q is the charge on the test particle and denotes 
differentiation with respect to s. It is readily shown that 

[e' + wI2(Rl2 - r") - rt2w' d6'/dt'I2 U?) '" 
ds = c dt'( 

c 2 [ c 2  + o t 2 ( ~ r 2  - rf2)] 

where, as previously (see equation (38)) 

uLPp = du'/dt '  

is the apparent or coordinate velocity. In the proper frame of the observer, i.e. when 
r' = R',  we find that 

(83) ds = c dT'(1-  u ' * / c ' ) ~ ' ~  

where, as previously (see Eq. 3 1)) 

U' = du' /dT'  (84) 

is the measured velocity at r' = R'.  

3.11. The cyclotron equation 

Let us consider a charged particle which is stationary with respect to the rotating 
coordinate system, i.e. if proper measurements are made then 

Equations (79) now simplify to give 

-mR'w'' = qE;P EL=O E: = O  (86)  

which, by equations (17), (201, (77) and (78) give 
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For an electron q = -e and, if ER = 0, equation (87) gives 

mRw2 
1/2 = &eRw (1-R2u2/c  ) 

which is the relativistic cyclotron equation and has been verified experimentally. 

4. Conclusions 

We have considered, in detail, the problem of relating measurements made by an 
observer at rest in an inertial laboratory frame to measurements made by an observer 
who is in synchronous rotation with a rotating system. We have assumed that the 
rotating system does not contain any matter other than test particles. 

Starting from first principles we have derived the appropriate coordinate trans- 
formations and have then applied these to the Minkowski metric to produce a general 
metric for a rotating system as defined above. It is important to realise that the metric is 
derived for an observer who is stationary with respect to the rotating system at inertial 
radius R rather than the more usual metric applied to rotating systems which describes 
the space-time as seen by an observer at the centre of rotation who is rotating with the 
system. These two metrics are obviously identical for R = 0. Using our metric we have 
examined various fundamental properties of the space. These include the various 
geodesics for the system and the equations of motion for charged and uncharged test 
particles and photons. A point of particular interest in connection with the geodesic 
analyses is the comparison of the geodesics obtained directly from the metric and those 
obtained by means of ‘collated proper measurements’. ‘Collated proper measure- 
ments’ are obtained when we allow the parameter R to vary, that is we let R = r. Hence 
the various equations derived by this technique correspond to a description of events 
made by an observer who actually moves through the rotating system and who makes 
measurements at various points, each measurement being made while he is at rest with 
respect to the rotating system. These measurements are then collated and the cor- 
responding geodesic paths are plotted out. 

Throughout the paper we indicate where local measurements using the metric we 
have derived produce results identical with those obtained by the instantaneous 
Lorentz frame approach to the analysis of a rotating system. A particular example is the 
equation for the aberration angle of a light ray seen by a rotating observer. 

We have also considered the description of electromagnetic fields in the rotating 
system and we have derived the equations of motion for a charged test particle in the 
rotating system. We have derived the cyclotron equation and we consider this result to 
be strong support for our metric. The equation is derived from the equations of motion 
for a charged test particle within the rotating system rather than the more usual 
technique of deriving the cyclotron equation from the equation of motion of a particle 
within the laboratory frame. 

In conclusion let us state once again that the results of the paper are a function of the 
way measurements are made in rotating frames. However, having said this, we feel that 
the results are very important in the interpretation of these measurements. The paper 
relates, in a precise manner, the ‘metric’ and the ‘instantaneous Lorentz frame’ 
approaches to the problems of rotating systems. It is now possible to analyse problems 
in rotating systems through either of the two techniques and to know that both 
techniques give compatible results providing that one is careful to define exactly what 
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one is measuring, the method of making the measurements and the way in which they 
are interpreted. However, the ‘metric’ approach is far more versatile in its applications 
without leading to any increase in complexity. 
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